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The present investigation explores the unsteady dynamics of large density contrast
non-Boussinesq lock-exchange flows by means of high-resolution two-dimensional
simulations of the incompressible variable-density Navier–Stokes equations, employ-
ing a combination of spectral and compact finite-difference methods. For small density
contrasts, the simulations closely reproduce earlier Boussinesq results for correspond-
ing flows. Across the entire range of density contrasts, good agreement is obtained
between the computed front propagation velocities and corresponding experimental
observations reported in Part 1 of this investigation and by other authors. The
simulations yield the required quantitative information with respect to the light and
dense front heights, their propagation velocities, and the spatial structure of the
dissipation fields in order to determine conclusively which of the scenarios developed
in Part 1 is observed in reality. Simulations are conducted for fluids with the same
kinematic viscosity, as well as for fluids with the same dynamic viscosity. For both slip
and no-slip boundary conditions, and for all Re values, we find that for larger density
contrasts, the dense front dissipates an increasing amount of energy. In contrast, the
energy dissipated by the light front remains near its Boussinesq level for all values
of the density ratio. In addition, for all density ratios, the height of the light front
is very close to half the channel height, and it propagates with a non-dimensional
velocity close to a half. This provides strong evidence that the dynamics of the light
front is indeed approximated by the energy-conserving solution described in an earlier
theoretical analysis. In contrast, the height of the dense front is substantially less than
half the channel height. In addition, its velocity is close to the value derived in Part 1
for a dissipative gravity current. Together with the above results for the dissipation
field, this confirms that the dense front behaves as a dissipative gravity current.

1. Introduction
In Part 1 of the present investigation (Lowe, Rottman & Linden (2005) hereinafter

referred to as LRL), a theoretical analysis of non-Boussinesq gravity currents in the
lock-exchange configuration is developed. It attempts to explain the dynamics of the
overall flow, which consists of a light front advancing along the top of the reservoir,
and a dense front propagating along the bottom. A first scenario for the evolution
of this flow in the presence of moderate density contrasts is developed based on
the assumption that both fronts are energy conserving. For this case, the analysis
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by Benjamin (1968) shows that the fronts will advance at different speeds, while
their heights will be equal to half the channel width (cf. also Rottman & Linden
2001). Volume conservation then demands that these energy conserving fronts are
connected by an expansion wave, and that a bore forms between the dense front and
the expansion wave (as discussed in § 3 of LRL).

LRL analyse the expansion wave and the internal bore on the basis of the two-
layer shallow-water equations, following the studies by Rottman & Simpson (1983)
and Keller & Chyou (1991). Here, the difficulty arises that it is unknown what
fraction of the dissipation associated with the internal bore occurs in each of the two
layers. Past theoretical analyses had been developed for both limiting cases, i.e. all
of the dissipation occurring either in the lower expanding layer (Yih & Guha 1955;
Chu & Baddour 1977; Wood & Simpson 1984) or in the upper, contracting layer
(cf. Klemp, Rotunno & Skamarock 1997). Since the spatial distribution of the dis-
sipation is difficult to measure experimentally, LRL derive results for each of these two
potential scenarios. They furthermore demonstrate that a third scenario is possible,
in which the expansion wave is connected directly to a dissipative dense current head,
without the formation of an internal bore. Hence, based on the above theoretical
considerations there appear to be three plausible scenarios for the evolution of non-
Boussinesq gravity currents in the lock-exchange configuration. They are distinguished
by the front heights, their propagation velocities, and the spatial distribution of the
dissipation field.

Information about the dissipation field is generally hard to obtain from experi-
mental measurements. In addition, it is difficult to realize a wide range of density
ratios with ‘standard’ fluids that can be handled easily in the laboratory. For this
reason, the experiments of LRL are limited to density ratios above approximately
0.6. Gröbelbauer, Fanneløp & Britter (1993) employ pairs of gases in order to extend
the range of density ratios, but that approach has its own difficulties regarding the
accurate determination of front heights and propagation velocities. Consequently,
here we employ two-dimensional nonlinear Navier–Stokes simulations in order to
obtain the information required to distinguish between the various plausible scenarios
for non-Boussinesq gravity currents derived by LRL, as outlined above. The goal is to
provide conclusive evidence as to which one of these scenarios will develop in reality.

As explained in the review of the pertinent literature by LRL, non-Boussinesq effects
can be important in a number of safety and environmental problems, ranging from
industrial processes involving gases of widely differing densities to fires in enclosed
structures such as tunnels (Grant, Jagger & Lea 1998; Kunsch 1999, 2002), and envir-
onmental phenomena such as snow avalanches. To date, most experimental, theoretical
and computational studies have addressed Boussinesq situations. The relatively few
investigations of gravity currents that have accounted for non-Boussinesq effects do
so either on the basis of a box model approach (cf. Huppert 1998), or the thin-layer or
shallow-water equations, such as in the work of Fanneløp & Jacobsen (1984). Studies
along these lines can be quite powerful in terms of providing information on the
global properties of density-driven currents. On the other hand, they do not allow for a
detailed investigation of the structure and dynamics of these currents. Specifically, they
do not provide information regarding the spatial distribution of viscous dissipation
rates. In this regard, highly resolved numerical simulations offer new opportunities, as
demonstrated by the recent Boussinesq investigations of density-driven (Härtel et al.
2000a, b) and particle-driven (Necker et al. 2002, 2005) currents. Necker et al. (2002)
compare two- and three-dimensional simulations for identical parameter combina-
tions. A main difference concerns the two-dimensional spanwise vortices, which survive



Non-Boussinesq lock exchange. Part 2 127

x

z

0 2 6 104 8 12 14 16 18 22 26 3020 24 28 32
–0.5

0

0.5

Figure 1. The classic lock-exchange configuration. A membrane initially divides the rect-
angular container of length L and height H into two compartments. The left-hand chamber is
filled with fluid of density ρ1, while the right-hand chamber contains fluid of smaller density
ρ2. Upon release of the membrane, a dense current moves rightward along the lower boundary,
while the light fluid propagates leftward along the upper boundary.

over long times in two-dimensional simulations, whereas they are subject to more rapid
breakdown in three-dimensional simulations, as a result of instabilities in the spanwise
direction. These and other simulations have provided considerable insight into the
dynamics and instabilities of the current fronts, and into the dissipation, mixing and
sedimentation processes dominating them. The present investigation hence aims to
deepen our understanding of non-Boussinesq gravity currents through highly resolved
numerical simulations, and to obtain the quantitative information required to determ-
ine which of the potential scenarios for such currents will be seen in the real flow.

Section 2 presents the equations governing non-Boussinesq lock-exchange flows,
along with the relevant non-dimensionalization process. Section 3 provides detailed
information regarding the computational approach for integrating the governing
equations. In § 4, we analyse the results obtained from our current simulations, with
respect to the heights and propagation speeds of the fronts, and the detailed energy
budget of the flow. Furthermore, the effects of initial and boundary conditions are
discussed, along with those of the Reynolds number. Section 5 summarizes the findings
and draws the main conclusions.

2. Basic equations
The simulations employ a rectangular channel of height H and length L, cf. figure 1.

The channel is filled with two miscible fluids initially separated by a membrane located
at x0 = 14. While the left compartment holds a fluid of density ρ1, the right reservoir is
filled with a fluid of lower density ρ2. This initial configuration causes a discontinuity
of the hydrostatic pressure across the membrane, which sets up a predominantly
horizontal flow once the membrane is removed. The denser fluid moves rightward
along the bottom of the channel, while the lighter fluid moves leftward along the top.

In most studies of gravity currents to date, the Boussinesq approximation has been
employed, i.e. relative density variations were assumed to be small throughout the
flow field. In the present study, our intention is to consider cases in which the density
ratio of the dense and the light fluid may in fact be very large, so that the Boussinesq
approximation cannot be invoked. Instead the full incompressible Navier–Stokes
equations for variable density flows have to be solved. These read,

∇ · u = 0, (2.1)

ρ
Du
Dt

= ρg − ∇p + ∇ · (2µS). (2.2)
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Here, D/Dt denotes the material derivative of a quantity, u = (u, v)T indicates the
velocity vector, p the pressure, ρ the density, and S the rate of strain tensor, while
g = geg represents the vector of acceleration due to gravity. In the following, we will
keep the kinematic viscosity ν constant for both fluids. Later we will also consider
the case of constant dynamic viscosity µ. In deriving the above continuity equation,
it is assumed that the material derivative of the density vanishes, i.e. Dρ/Dt =0.
This common assumption requires small diffusivities of the species concentration.
The conservation of species is expressed by the convection-diffusion equation for the
concentration c of the heavier fluid. By assuming a density-concentration relationship
of the form ρ = ρ2 + c(ρ1 − ρ2), we arrive at the following equation for the density
field,

Dρ

Dt
= K∇2ρ, (2.3)

where the molecular diffusivity K is taken to be constant. Note that the diffusive
term must be kept in (2.3) in order to avoid the development of discontinuities in the
computation of the density field. This holds true even if diffusive effects are very small,
as in the case of liquids. In order to non-dimensionalize the above set of equations,
the channel height H is taken as the length scale, while the density ρ1 of the heavier
fluid serves as the characteristic density. Velocities are scaled by the buoyancy velocity
ub =

√
g′H , in which g′ denotes the reduced gravity (Simpson 1997), which is related

to the dimensional acceleration due to gravity, g by g′ = g(ρ1 − ρ2)/ρ1 = g(1 − γ ),
where the density ratio is given by γ = ρ2/ρ1 < 1. A characteristic pressure p is given
by u2

bρ1. We thus arrive at the following set of governing dimensionless equations

∇ · u = 0, (2.4)

ρ
Du
Dt

=
1

1 − γ
ρeg − ∇p +

1

Re
∇ · (2ρS), (2.5)

Dρ

Dt
=

1

Pe
∇2ρ. (2.6)

If we were to make use of the Boussinesq assumption (2.5) would instead simplify to

Du
Dt

= ρeg − ∇p +
1

Re
∇2u. (2.7)

Note that we cannot obtain (2.7) from (2.5) merely by substituting γ = 1, as the
hydrostatic pressure field absorbed into the variable p varies between the two cases.

In the present investigation, only horizontal channels are considered, so that eg is
given by the unit vector (0, 0, −1). The three governing dimensionless parameters in
(2.4)–(2.6) are the density ratio γ , the Reynolds number Re, and the Péclet number
Pe, respectively, which are defined as Re = ubH/ν and Pe= ubH/K . They are related
by the Schmidt number Sc= ν/K , so that Pe= Re Sc. It represents the ratio of
kinematic viscosity to molecular diffusivity. For most pairs of gases, the Schmidt
number lies within the narrow range between 0.2 and 5. By means of test calculations
we established that the influence of Sc variations in this range is quite small, so that
in the simulations to be discussed below, we employ Sc= 1 throughout. It is to be
kept in mind, however, that for liquids such as salt water, Sc ≈ 700.

For the purpose of numerical simulations, we recast (2.4)–(2.6) into the vorticity–
streamfunction formulation. In this way, the incompressibility condition (2.4) is auto-
matically satisfied throughout the flow field. Let ψ be the streamfunction and ω the
vorticity in the spanwise direction. Then the relations ω = ∂v/∂x − ∂u/∂z, u = ∂ψ/∂y,
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and v = −∂ψ/∂z hold, and we obtain

∇2ψ = −ω, (2.8)

Dω

Dt
=

1

Re
∇2ω − ρx

(1 − γ )ρ
+

ρz

ρ

Du

Dt
− ρx

ρ

Dv

Dt

+
1

ρRe
{2ρx∇2v − 2ρz∇2u + 4ρxzvz + (uz + vx)(ρxx − ρzz)}. (2.9)

If the dynamic viscosity µ is held constant instead of the kinematic viscosity ν, (2.9)
takes the form

Dω

Dt
=

1

ρRe
∇2ω − ρx

(1 − γ )ρ
+

ρz

ρ

Du

Dt
− ρx

ρ

Dv

Dt
. (2.10)

We typically consider rectangular computational domains of length L =32. Initially,
slip conditions are enforced along all of the walls. Consequently, we assign ψ = 0 and
ω =0 along all boundaries. The concentration satisfies Neumann boundary conditions
along all walls, in order to enforce zero diffusive mass flux. We will also evaluate the
effect of no-slip conditions along the top and bottom boundaries in § 4.5. These are
implemented by taking ψ = 0 along with ω = −∂2ψ/∂z2.

3. Computational approach
The simulations employ equidistant grids in the rectangular computational domain.

Spectral Galerkin methods are used in representing the streamwise dependence of the
streamfunction and the vorticity fields

ψ(x, z, t) =
∑

l

ψ̂ l(z, t) sin(lαx), ω(x, z, t) =
∑

l

ω̂l(z, t) sin(lαx), (3.1)

where |l| <N1/2 and α = 2π/L. N1 denotes the number of grid points in the streamwise
direction. Vertical derivatives are approximated on the basis of the compact finite-
difference stencils described by Lele (1992). As in the Boussinesq investigation of
Härtel et al. (2000a), derivatives of the density field are computed from compact finite
differences in both directions. At interior points, sixth-order spatially accurate stencils
are used, with third- and fourth-order accurate stencils employed at the boundaries.
The flow field is advanced in time by means of the third-order Runge–Kutta scheme
described by Härtel et al. (2000a). The material derivatives of the velocity components
appearing in the vorticity equation (2.9) are computed by first rewriting them in terms
of the local time derivative plus the convective terms. The spatial derivatives appearing
in the convective terms are then evaluated in the usual high-order way. The local
time derivative is computed by backward extrapolation as follows,[

∂u
∂t

]n

= (un − un−1)/�t. (3.2)

This approximation is consistently used during the successive Runge–Kutta substeps.
Test calculations demonstrated that the low-order approximation of this term did
not influence the results in a measurable way.

The Poisson equation for the streamfunction (2.8) is solved once per time step in
Fourier space according to(

ψ̂m+1
l

)′′ − (lα)2ψ̂m+1
l = −ω̂m+1

l , (3.3)

with the prime denoting differentiation with respect to z.
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3.1. Initial conditions

In the present simulations, the flow field is initialized with the fluid at rest, i.e. u = 0
everywhere (corresponding to ψ = 0 and ω = 0). The initial density field ρ0(x) could, in
principle, be a step function with a density discontinuity at x = x0. However, since the
numerical scheme employs Fourier expansions in the x-direction, the density profile
must be continuous, and a smooth transition between the initial densities in the
left-hand and right-hand reservoirs has to be provided. Consequently, as the initial
density field we specify an error function profile of the form,

ρ0(x) =
γ + 1

2
− 1 − γ

2
erf(x

√
ReSc). (3.4)

This particular density profile was chosen because it satisfies the one-dimensional
diffusion equation. The steepness of the profile (3.4) at the interface depends on the
values of Re and Sc. Using the numerical approach described above, adequate resolu-
tion requires a grid size of �x ≈ (Re Sc)−1/2 in the streamwise direction (Härtel et al.
2000a), hence a grid of 4000 × 200 is typically employed. The simulations were per-
formed on a 20-processor SGI machine, and the run times varied from 4 to 24 hours.

The results for γ ≈ 1 should be nearly identical to those obtained in our earlier
Boussinesq investigation (Härtel et al. 2000a). This fact will be used below in order
to validate the computational code in the limit of density ratios near unity. For
all other density ratios, the most meaningful validation of the numerical results
involves a combination of monitoring the overall energy conservation and comparing
computational results for the front propagation velocities with the experimental data
of Gröbelbauer et al. (1993) and LRL.

4. Results
4.1. Overview

In order to validate the computational approach and the numerical simulation code,
we first consider a case in which the initial density difference is very small. In
this limiting situation, rather than solving the full variable-density Navier–Stokes
equations, we could instead apply the Boussinesq approximation. Thus, the results
obtained by solving the present variable-density equations for γ ≈ 1 should agree with
our earlier results based on the Boussinesq equations (cf. Härtel et al. 2000a). We
begin by considering the case γ = 0.998 for Re= 4000. Figure 2 displays contours of
the density field at several times, thereby demonstrating the temporal development
of the interfacial region separating the two currents. Figure 2(a) shows that a sharp
density gradient across the interface persists at time t =2. The heavier fluid has begun
to move towards the right, and underneath the lighter fluid. At the same time, the
lighter fluid is moving towards the left along the upper boundary, as it fills the space
vacated by the denser fluid. This process is accompanied by the formation of two
strong initial vortices near the heads of the fronts, and a shear layer in between, which
separates the rightward-moving dense bottom current from the leftward-moving light
top current. We shall use xf (xr ) to denote the time-dependent location of the foremost
point of the dense (light) front, defined as the location where the density is equal to
(γ + 1)/2. By means of interpolation, these front locations can be determined with a
high degree of accuracy.

By time t = 10 (cf. figure 2b), the symmetry with respect to the initial interface
location at x =14 is maintained throughout the flow, as it should for the current with
small density difference and the present set of initial and boundary conditions. The
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Figure 2. Concentration contours from a non-Boussinesq simulation for γ = 0.998 and
Re =4000, at times (a) t = 2, (b) 10 and (c) 16. (d) Concentration contours from a corresponding
Boussinesq simulation at t = 16. For this density ratios γ =0.998, the non-Boussinesq
simulation is seen to give results that are very close to those of the Boussinesq simulation.

initial vortices now have increased in size and strength, and the Kelvin–Helmholtz
instability emerging along the near horizontal sections of the interface is clearly
visible. As was also observed in the earlier Boussinesq simulations of Härtel et al.
(2000a), these Kelvin–Helmholtz billows may undergo a pairing process, similar to
that observed in constant-density shear layers (Winant & Browand 1974). The early
stages of such a pairing process are observed for the two vortices closest to the initial
interface location by t = 16 (cf. figure 2c). Note that in a three-dimensional simulation,
the Kelvin–Helmholtz billows tend to decay more rapidly, owing to instabilities in
the spanwise direction (cf. Härtel et al. 2000a and figure 2a in LRL).

Figure 2(d) shows the density contours at the corresponding time from a simulation
based on the Boussinesq approximation. By comparing figures 2(c) and 2(d), we see
that for γ ≈ 1, the present non-Boussinesq approach indeed closely reproduces the
Boussinesq results. Similar agreement was also observed for other Re values, which
validates the present computational code in the limit of γ ≈ 1.

As a next step, we consider γ = 0.92, again for Re = 4000. This density ratio is
close to the limit where the Boussinesq approximation loses its validity. Figure 3(a)
demonstrates that the point-symmetrical dynamics of the Boussinesq situation no
longer develops. Even though initially the differences between the cases γ = 0.998 and
γ = 0.92 are relatively small, asymmetries are seen to grow over time with respect
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Figure 3. Concentration contours for Re= 4000, at time t = 10. (a) γ = 0.92, (b) 0.7, 0.2. As
the ratio of the densities decreases, asymmetries develop in the frontal velocities and the
dynamics of the mixing layer vortices.

to the frontal locations and the mixing-layer vortices. While a pairing process with
nearly perfect symmetry had been observed in the γ = 0.998 simulation, this scenario
no longer holds for γ = 0.92.

Figure 3(b) depicts the flow for the relatively large density contrast of γ = 0.7. Here
the resulting asymmetry of the dominant flow features is much more pronounced.
Already the initial vortex of the denser current is significantly stronger than that of
the lighter current. The dense current propagates to the right along the bottom of the
computational domain at a larger velocity than that of the light current propagating
to the left along the top boundary, in agreement with the experiments by LRL (cf.
their figure 3). Instabilities in the interfacial region evolve more rapidly near the
rightward-moving dense front as compared to the receding light front.

For two fluids of vastly disparate densities, markedly different features emerge in
the dynamics of the dense front (cf. figure 3c). Its height is considerably lower than
before, and strong vortices form in close proximity to it. At the same time, the light
front is now completely stabilized. In comparison to the case of γ =0.7, the dense
front at time t = 10 has propagated further, in good agreement with the experimental
observations of Gröbelbauer et al. (1993). The expansion wave connecting the dense
and light fronts is clearly visible. Note that the generation of vortical structures is
limited to the region near the dense front. This lack of instabilities in the leftward-
moving light current is consistent with the linear stability analysis described in § 5 of
LRL. Across the dense current, the velocity difference, and hence the shear, is larger,
which has a destabilizing effect.

The heights of the dense and light fronts represent important quantities in the
analysis of the overall flow, as they will help determine which one of the proposed
theoretical solutions is observed. In order to obtain quantitative data, we define
the height h(x) of the dense current by integrating the concentration field in the
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Figure 4. The height of the dense current for the flow depicted in (b). (a) h(x) evaluated
by spatially averaging over N = 16 (solid lines) and N = 10 (dashed lines) grid points. The
comparison indicates that the current height h(x) is largely independent of N . The height at
the end of the expansion wave hw is defined as the lowest point within the extended region
of decreased height behind the dense front. The height hf of the dense front is the maximum
of h(x) between the end of the expansion wave and the tip xf of the dense front. The height
of the light front hr is evaluated at the first minimum of h(x), coming from the left-hand
boundary. (b) The height hr (t) of the light front (dash-dot line) remains close to the value
of 0.5 for an energy conserving front (solid line) throughout the simulation. In contrast, the
height hf (t) of the dense front (dashed line) is substantially below that value.

z-direction

h∗(x) =
1

(1 − γ )

∫ 1

0

ρ(x, z) dz − γ

(1 − γ )
, (4.1)

and subsequently taking a moving average of h∗(x) over N grid points in the
x-direction, in order to eliminate high-frequency oscillations

h(xi) =
1

N + 1

N/2∑
j=−N/2

h∗(xi+j ). (4.2)

The comparison shown in figure 4(a) for N = 10 and 16 (for the flow shown in figure 4)
indicates that the resulting measure of the current height is largely independent of
N . Use of (4.1) removes the need to make a subjective judgement of the depth of
the current, as has usually been the case in previous experiments. Furthermore, it
accounts for the fact that the driving pressure for the current is given by the vertical
integral of the density

g′h(x) = g

∫ H

0

ρ(x, z) − ρ1

ρ1

dz. (4.3)

Consistent with the experiments of LRL, we observe a decrease in the height of the
dense current behind the front. As indicated in figure 4, we take the lowest point
in this region as the end of the expansion wave. Here, the height of the current is
indicated by hw . The highest value of h downstream of this location is taken as the
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Figure 5. The (a) light and (b) dense current propagation velocities as functions of time for
various density ratios. γ =0.2 (solid line), 0.26 (dashed line), 0.3 (dash-dot line), 0.4 (dotted
line), 0.7 (long dash line), 0.998 (dash-dot-dot line). The velocity of the light front is seen to
be independent of γ , while the dense front propagates more rapidly as the density contrast
increases.

front height hf . The height of the receding front is evaluated as 1−hr , where hr is the
value at the location of the first minimum of h(x), coming from the left (cf. figure 12
in LRL).

For the flow depicted in figure 3(b), figure 4(b) shows the front heights of the two
currents as functions of time. After an initial transient, the light front height remains
steady at a value of about 0.47, which is close to the value of 0.5 for an energy
conserving front. On the other hand, the height of the dense front is closer to 0.4,
which is substantially below the value for an energy conserving front. This difference
in heights provides a first indication that the two fronts evolve in fundamentally
different ways.

To quantify the dense and light front speeds, respectively, we define uf = dxf /dt

and ur = |dxr/dt |. The dimensionless dense front speed uf is sometimes referred to as
the Froude number of the dense current.

Figure 5 depicts the front speeds as functions of time for various values of γ .
For all density ratios, we see the propagation velocity of the light front approaching
a steady-state value just below 0.5 (cf. figure 5a). This front speed is in agreement
with the value postulated by Benjamin (1968) for an energy-conserving current, cf.
also LRL. In contrast, the propagation velocity of the dense front is seen to depend
strongly on γ (cf. figure 5b). As the density difference between the two fluids increases,
the heavy front advances at a faster rate.

Figures 9 and 11 in LRL present a comparison of the present computed steady-
state (or time-averaged, if no steady state exists) velocities for the light and dense
fronts, respectively, with the data from the experiments of LRL, Gröbelbauer et al.
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(1993), and Keller & Chyou (1991), as well as with the theoretical values proposed by
LRL for an energy-conserving light front and a dissipative dense front. For the entire
range of γ values investigated here, the numerically computed front propagation
velocities agree well with those observed in the experiments. The small remaining
discrepancies are probably due to a combination of reasons. For example, the various
combinations of gases and liquids employed in the experiments result in a range
of experimental Reynolds and Schmidt numbers, whereas in the simulations those
parameters are kept constant at Re = 4000 and Sc=1. In addition, the present values
were obtained for slip boundary conditions. Furthermore, we must keep in mind
that the simulations are strictly two-dimensional, and that three-dimensional effects
might alter the front propagation velocity somewhat. Such slight variations between
two- and three-dimensional front velocity values are observed, for example, in the
Boussinesq simulations of particle-driven gravity currents by Necker et al. (2005).
Finally, there may be imprecisions in the experimentally determined front velocity as
well. Overall, the good level of agreement can be taken as further evidence for the
validity of the present simulation data.

4.2. Energy budgets

Three different potential scenarios for the dynamics of the dense front in non-
Boussinesq gravity currents were discussed in LRL. These scenarios are distinguished
by the heights and the speeds of the fronts, by the existence of an internal bore,
and by the ways in which the initially available potential energy is converted into
kinetic energy, and subsequently dissipated into heat by viscous friction. It is difficult
to measure the spatio-temporal evolution of these energetic quantities with high
accuracy. Hence, in the following we will provide a computational analysis of the
overall energy budget, in order to identify which one of the three potential solutions
is most likely to be observed physically.

We will begin by commenting on the accuracy with which the overall energy is con-
served in the numerical simulations. Then, we will discuss the temporal and spatial
distribution of viscous dissipation, in order to establish whether or not it is predomi-
nantly localized in either the heavier or the lighter fluid. As discussed in LRL, past
theoretical analyses of bores have been based on the assumption that all of the dissipa-
tion is localized either in the expanding layer (the lower layer in our case, Yih &
Guha 1955; Wood & Simpson 1984), or in the contracting layer (cf. Klemp et al.
1997). Which one of these assumptions is closer to reality remains an unresolved
issue. Lastly, we will contrast the amount of dissipation in the light front with that
in the dense front. This comparison will demonstrate that it is indeed justified to
consider the overall flow as a combination of a light energy-conserving front and a
heavy dissipative front.

The equation for the time derivative of the kinetic energy can be obtained by
multiplying the momentum equation (2.5) by ui , which yields

D

Dt

(
1
2
ρuiui

)
= − ∂

∂xi

(pui) +
1

Re

∂

∂xj

(ρsijui) − 2

Re
ρsij sij − 1

1 − γ
ρv, (4.4)

where D/Dt indicates the material derivative and sij denotes the rate-of-strain tensor
sij =(∂ui/∂xj +∂uj/∂xi/2). Integration of (4.4) over the entire flow domain Ω provides
an equation for the temporal evolution of the total kinetic energy K , which is the
primary quantity of interest here

dK

dt
= −

∫
Ω

2

Re
ρsij sij dV − 1

1 − γ

∫
Ω

ρv dV, K(t) =

∫
Ω

1

2
ρuiui dV. (4.5)
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Note that the first two terms on the right-hand side of (4.4) are divergence terms
which, in the present case, vanish after integration over Ω (see Necker et al. 2002).

The potential energy in the system is obtained from the integral

Ep(t) =

∫
Ω

1

1 − γ
ρz dV, (4.6)

and its time derivative is given by

dEp

dt
=

∫
Ω

1

1 − γ

D(ρz)

Dt
dV =

1

1 − γ

∫
Ω

ρv dV +
1

1 − γ

∫
Ω

z
Dρ

Dt
dV. (4.7)

The second term on the right-hand side of (4.7) can be rewritten by means of the
transport equation (2.6). For simplicity, we neglect in the following the effects of
diffusion in the concentration field on the potential energy (see Winters et al. 1995
for a discussion of such effects), and thus arrive at the following equation for Ep ,

d

dt
Ep =

1

1 − γ

∫
Ω

ρv dV. (4.8)

Summing (4.5) and (4.8), and taking into account that no change in potential energy
occurs due to transport across domain boundaries, we find for d/dt(K + Ep), i.e. for
the change of total mechanical energy with time,

d

dt
(K + Ep) = − 2

Re

∫
Ω

ρsij sij dV = −
∫

Ω

ε dV = −ε, (4.9)

where ε represents the local rate of dissipation ε =(2/Re)ρsij sij . Integrating (4.9) with
respect to time yields K+Ep+Ed =const. = K0+Ep0, with Ep0 being the initial poten-
tial energy, K0 the initial kinetic energy, and Ed the time integral of the dissipation

Ed(t) =

∫ t

0

ε(τ ) dτ. (4.10)

By subtracting the potential energy of the light fluid,

Eamb =
1

1 − γ

∫
Ω

γ z dV, (4.11)

from the overall potential energy of the system, we obtain the available potential
energy Ee

p0 = Ep0 −Eamb, and Ee
p =Ep −Eamb. Only this available potential energy can

be converted into kinetic energy and, ultimately, be dissipated. Hence, we normalize
all contributions to the overall energy budget with the initial available potential
energy En

p = Ee
p/Ee

p0, Kn = K/Ee
p0, and En

d = Ed/E
e
p0. Here, the superscript n denotes

normalized contributions. The time histories of these normalized kinetic energy,
potential energy and dissipation values over the course of the simulations for γ = 0.998
and 0.4 are shown in figure 6. It is obvious from these graphs that the overall energy
is conserved to a high degree of accuracy during these simulations, even over fairly
long times. The maximum error is of the order of 4 %, and can be attributed to the
fact that we have neglected diffusive effects in the concentration field in the derivation
of the energy equations. Furthermore, En

d is evaluated with a comparatively low-order
integration scheme.

4.2.1. Spatial distribution of dissipation

The local, instantaneous rate of dissipation ε is evaluated at each grid point as ex-
plained above. By weighting it with the dense fluid concentration c = (ρ − γ )/(1 − γ ),
we can associate a fraction of this rate of dissipation with the dense fluid ‘1’, while the
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Figure 6. The normalized total energy (circles), kinetic energy (triangles), potential energy
(squares) and dissipated energy (diamonds) as a function of time for (a) γ = 0.998 and (b) 0.4.
The solid line without symbols is drawn at a constant value of one. Overall energy is conserved
to within about 1.5% in the simulations. With decreasing density ratios, the conversion of
potential into kinetic energy proceeds at a slightly faster rate.

remainder is considered to occur within the light fluid ‘2’. Thus, at each grid point, we
obtain ε1 = cε and ε2 = (1 − c)ε. Here, ε represents the entire local rate of dissipation,
ε1 indicates the local rate of dissipation associated with the dense fluid, and ε2 is the
local rate of dissipation within the light fluid. Figure 7(a) depicts the percentage of
the overall dissipated energy that is associated with the dense fluid

Ed,1 =
1

Ed

∫ t

0

∫
Ω

ε1(τ ) dV dτ, (4.12)

as a function of time for various density ratios. As expected, for the Boussinesq-like
flow of γ = 0.998, the dissipated energy is equally distributed between the dense and
the light fluids. As the density ratio decreases, the lighter fluid dissipates slightly more
energy than the heavier fluid. For γ =0.7, the percentage of the dissipated energy
associated with the dense fluid has dropped to about 47 %. For the smallest density
ratio that we simulated, γ =0.2, this percentage has decreased to 37 %. Figure 7(b)
shows the percentage Ed,1 at the final simulation time t = 16 as a function of the
density ratio. While Ed,1 is seen to decay uniformly with γ , the figure suggests that
even in the limit of very large density contrast this fraction will not go to zero.

While the above analysis focused on the relative fractions of the total dissipated
energy associated with the dense and the light fluids, we will now analyse the fractions
of the overall dissipated energy associated with the dense and light fronts. To this
end, we assign all of the dissipation to the left (right) of x0 to the light (dense) front

E
f
d =

∫ t

0

∫ x0

0

∫ 0.5

−0.5

ε(τ ) dz dx dτ, Er
d =

∫ t

0

∫ L

x0

∫ 0.5

−0.5

ε(τ ) dz dx dτ, Ed = E
f
d + Er

d. (4.13)
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Figure 7. The percentage Ed,1 of the overall dissipated energy associated with the dense fluid,
as a function of (a) time and (b) γ at t = 16. (a) Density ratios γ = 0.2 (upward triangles), 0.3
(right triangles), 0.4 (diamonds), 0.7 (circles), and 0.998 (downward triangles). As the density
ratio decreases, a larger fraction of energy is dissipated within the lighter fluid. After an initial
transient, Ed,1 remains approximately constant with time. (b) Shows as γ decreases, a smaller
fraction of the energy is dissipated within the denser fluid. However, this percentage does not
tend to zero as the density contrast becomes very large.
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Figure 8. The components of the overall dissipated energy associated with the dense front

(E
f
d , dashed lines) and the light front (Er

d , solid lines) as functions of time for the density
ratios γ = 0.2 (squares), 0.4 (triangles) and 0.7 (circles).

Figure 8 depicts Er
d and E

f
d as functions of time for γ = 0.2, 0.4 and 0.7. These

results clearly show that, as the density contrast increases, the amount of energy
dissipated within the light front decreases slightly from its Boussinesq value, whereas
the dense front dissipates an increasing amount of energy. In combination with
the computational data on the front heights and their propagation velocities, this
provides convincing evidence for the argument put forward in LRL, namely that the
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Figure 9. The vertically integrated dissipation rate εv(x) for γ = 0.4 and Re =4000 at t = 16
confirms that the level of dissipation is significantly higher in the dense front, as compared to
the light front.
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Figure 10. The fraction of the potential energy lost up to time t that has been converted into
(a) kinetic energy and (b) dissipation, respectively, for various density ratios. γ = 0.2 (squares),
0.4 (triangles), 0.7 (diamonds) and 0.998 (circles). For decreasing γ , dissipation accounts for a
larger share of the lost potential energy, which is due to the increasingly dissipative nature of
the dense front.

non-Boussinesq flow is composed of an essentially energy-preserving light front and a
dissipative dense front, which are connected by an expansion wave. This is furthermore
confirmed by figure 9, which shows the vertically integrated dissipation rate,

εv =

∫ 0.5

−0.5

ε dz, (4.14)

as a function of the streamwise coordinate. Clearly, the level of dissipation is
significantly higher in the heavy front, as compared to the light front. Figure 10
shows what percentage of the potential energy lost up to time t has been converted
to kinetic energy, and what fraction has been dissipated, for various values of the
density ratio. With decreasing γ , the dissipated energy accounts for a larger share of
the lost potential energy. In light of figure 8, we can conclude that this is due to the
increasingly dissipative nature of the dense front.

In the following, we will discuss how the flow is influenced by the Reynolds number,
as well as by the initial and boundary conditions.

4.3. Influence of the Reynolds number

The overall evolution of the dissipation field can be expected to vary with Re, owing
to the changing balance of viscous and inertial forces. Hence, it is important to
check the degree to which the above picture depends on Re. In order to illustrate the
dependence of the overall flow on Re, we restrict our attention to the intermediate
density ratio of γ = 0.4. Figure 11 displays the concentration fields at time t = 10 for
the four Re-values of 1000, 4000 and 12 000. As Re increases, a larger number of
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Figure 11. Concentration contours at t = 10 for γ = 0.4. (a) Re =1000, (b) 4000, (c) 12 000.
With increasing Re, a larger number of vortices appear in the region between the initial lock
location and the dense front, while the light front maintains its essentially energy-conserving
nature.
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Figure 12. The components of the overall dissipated energy associated with the dense front

(E
f
d , dashed lines) and the light front (Er

d , solid lines) as functions of time for the density ratio
γ = 0.4 and Re= 1000 (squares), 4000 (triangles), 8000 (diamonds), and 12 000 (circles). The
amount of energy dissipated in the light front is substantially lower than that in the dense
front, for all values of Re.

vortical structures appear over a longer section of the interfacial region separating the
two currents. However, even for the largest Re values, the formation of these vortices
is limited approximately to the dense front and the expansion wave, whereas strong
vortices are not seen to form near the light front. Furthermore, the front velocities
are seen to be essentially independent of Re above Re = 4000. This suggests that the
light front remains essentially energy conserving across the entire Re range.

Figure 12 compares the amounts of energy dissipated within each front as a function
of time, for various values of Re. For all Reynolds numbers, the dense front dissipates
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Figure 13. Influence of an initial staircase-like front geometry: Concentration contours for
γ = 0.4 and Re= 4000 at times t = 0 (a) and 16(b). Again, the flow evolves towards a stable,
energy conserving light front connected to a dissipative dense front by an expansion wave.

substantially more energy than the light front, so that the distinction between the
dissipative dense front and the more nearly energy conserving light front persists.

4.4. Influence of the initial conditions

In order to illustrate the effect of varying the initial geometry of the front, figure 13
shows concentration contours obtained for an initial ‘staircase-like’ profile. Here
γ = 0.4, with Re= 4000. The early stages of the flow evolution clearly reflect the
different initial geometry. Essentially each of the two steps within the staircase profile
leads to the formation of separate light and heavy fronts. However, soon the light
front emerging from the lower, right step combines with the dense front coming from
the upper, left step, resulting in a long time evolution of the overall flow that is quite
similar to the case of an initially vertical front. For long times, the front propagation
velocities of the two cases are nearly identical. Again we observe a stable, energy con-
serving light front that is connected by an expansion wave to a dissipative dense front.

4.5. Influence of the boundary conditions

All of the simulations presented up to now employed slip boundary conditions
along the horizontal walls. On the other hand, the work by Necker et al. (2005) for
Boussinesq currents had shown that a significant amount of dissipation takes place
in the viscous boundary layers near the solid walls which form as a result of the
no-slip condition. Hence it is essential to check if the above picture of a dissipative
dense front and a nearly energy conserving light front is modified in any significant
way by the presence of a boundary layer. In order to illustrate the effects of imposing
no-slip boundary conditions, figure 14 shows corresponding contour plots for γ = 0.4
and Re = 4000. This figure is to be compared with the slip flow of figure 3(b). It can
be seen that the no-slip boundary slows both of the fronts down, cf. also figure 15,
as had also been observed in the Boussinesq investigation of Härtel et al. (2000a).
However, it does not change the dominant qualitative features of the flow, i.e., a
stably propagating light front connected to a dissipative dense front characterized by
the continuous formation of vortical structures.

With respect to the distribution of the dissipated kinetic energy, the no-slip flow
is seen to behave very similarly to the slip flow. Hence even for no-slip flows, the
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Figure 14. Concentration contours at t = 10 for γ = 0.4 and Re = 4000, for no-slip boundary
conditions along the horizontal walls. Similarly to the corresponding slip flow (shown in
figure 3), the no-slip flow is characterized by intense vortical structures near the dense front,
and a stable interface near the light front.
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Figure 15. A comparison of dense (triangles) and light (squares) front velocities for γ = 0.4
and Re= 4000. The solid (dashed) lines refer to the case of slip (no-slip) boundary conditions
along the horizontal walls. While both fronts are slowed down by the no-slip boundary
condition, the dense front remains significantly faster than the light front.

concept of a nearly energy conserving light front joined by an expansion wave to a
dissipative dense front remains valid.

4.6. Simulations with constant dynamic viscosity µ

The vorticity transport equation (2.9) will simplify to (2.10) if we assume µ to be
constant instead of ν. For the Boussinesq case, these two situations are equivalent, but
for larger density contrasts some differences emerge. For constant dynamic viscosity
the formation of vortices is found to be limited to a smaller region close to the dense
front. However, all of the above observations regarding the qualitative dependence of
the front heights and velocities on γ remain valid qualitatively, and to a good degree
also quantitatively. The same holds for the spatial distribution of dissipation between
the light and the heavy fluid, and the dense and the light front.

5. Summary and conclusions
The present investigation explores the unsteady dynamics of non-Boussinesq lock-

exchange flows by means of high-resolution two-dimensional simulations of the
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incompressible variable-density Navier–Stokes equations. These simulations yield the
required quantitative information with respect to front heights, propagation velocities
and dissipation fields in order to determine conclusively which of the three scenarios
developed in LRL of the investigation is observed in reality. For both slip and no-
slip boundary conditions, and for all Re values, we found that, for larger density
contrasts, the dense front dissipates an increasing amount of energy. In contrast, the
energy dissipated by the light front remains near its Boussinesq level for all values
of the density ratio. In addition, the height of the light front is very close to half
the channel height, and it propagates with a non-dimensional velocity very close to
a half. This provides strong evidence that the dynamics of the light front is indeed
closely approximated by the energy conserving solution described in the theoretical
analysis of Benjamin (1968). In contrast, the height of the dense front is substantially
less than half the channel height. In addition, its velocity is close to the value derived
by LRL for a dissipative gravity current, and dissipation occurs primarily in the light
fluid near the dense front. Together with the above results for the dissipation field,
this confirms that the dense front behaves as a dissipative gravity current.
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